2,009 research outputs found

    Flavour changing neutral current processes of B and K Mesons from Lattice QCD

    Get PDF

    On the Efficiency of An Election Game of Two or More Parties: How Bad Can It Be?

    Full text link
    We extend our previous work on two-party election competition [Lin, Lu & Chen 2021] to the setting of three or more parties. An election campaign among two or more parties is viewed as a game of two or more players. Each of them has its own candidates as the pure strategies to play. People, as voters, comprise supporters for each party, and a candidate brings utility for the the supporters of each party. Each player nominates exactly one of its candidates to compete against the other party's. A candidate is assumed to win the election with higher odds if it brings more utility for all the people. The payoff of each player is the expected utility its supporters get. The game is egoistic if every candidate benefits her party's supporters more than any candidate from the competing party does. In this work, we first argue that the election game always has a pure Nash equilibrium when the winner is chosen by the hardmax function, while there exist game instances in the three-party election game such that no pure Nash equilibrium exists even the game is egoistic. Next, we propose two sufficient conditions for the egoistic election game to have a pure Nash equilibrium. Based on these conditions, we propose a fixed-parameter tractable algorithm to compute a pure Nash equilibrium of the egoistic election game. Finally, perhaps surprisingly, we show that the price of anarchy of the egoistic election game is upper bounded by the number of parties. Our findings suggest that the election becomes unpredictable when more than two parties are involved and, moreover, the social welfare deteriorates with the number of participating parties in terms of possibly increasing price of anarchy. This work alternatively explains why the two-party system is prevalent in democratic countries

    Tight Approximation for Partial Vertex Cover with Hard Capacities

    Get PDF
    We consider the partial vertex cover problem with hard capacity constraints (Partial VC-HC) on hypergraphs. In this problem we are given a hypergraph G=(V,E) with a maximum edge size f and a covering requirement R. Each edge is associated with a demand, and each vertex is associated with a capacity and an (integral) available multiplicity. The objective is to compute a minimum vertex multiset such that at least R units of demand from the edges are covered by the capacities of the vertices in the multiset and the multiplicity of each vertex does not exceed its available multiplicity. In this paper we present an f-approximation for this problem, improving over a previous result of (2f+2)(1+epsilon) by Cheung et al to the tight extent possible. Our new ingredient of this work is a generalized analysis on the extreme points of the natural LP, developed from previous works, and a strengthened LP lower-bound obtained for the optimal solutions

    The role of Causality in Tunable Fermi Gas Condensates

    Full text link
    We develop a new formalism for the description of the condensates of cold Fermi atoms whose speed of sound can be tuned with the aid of a narrow Feshbach resonance. We use this to look for spontaneous phonon creation that mimics spontaneous particle creation in curved space-time in Friedmann-Robertson-Walker and other model universes.Comment: 9 pages, 2 figures. In v.3 the formalism is different from the existing arXiv versions, but the final results are unchanged. Title changed, one author added. The article will be published in the special edition of Journal of Physics: Condensed Matter on "Condensed matter analogues of cosmology
    • …
    corecore